# HSSlive: Plus One & Plus Two Notes & Solutions for Kerala State Board

## BSEB Class 9 Maths Chapter 10 वृत्त Ex 10.6 Textbook Solutions PDF: Download Bihar Board STD 9th Maths Chapter 10 वृत्त Ex 10.6 Book Answers

 BSEB Class 9 Maths Chapter 10 वृत्त Ex 10.6 Textbook Solutions PDF: Download Bihar Board STD 9th Maths Chapter 10 वृत्त Ex 10.6 Book Answers

BSEB Class 9th Maths Chapter 10 वृत्त Ex 10.6 Textbooks Solutions and answers for students are now available in pdf format. Bihar Board Class 9th Maths Chapter 10 वृत्त Ex 10.6 Book answers and solutions are one of the most important study materials for any student. The Bihar Board Class 9th Maths Chapter 10 वृत्त Ex 10.6 books are published by the Bihar Board Publishers. These Bihar Board Class 9th Maths Chapter 10 वृत्त Ex 10.6 textbooks are prepared by a group of expert faculty members. Students can download these BSEB STD 9th Maths Chapter 10 वृत्त Ex 10.6 book solutions pdf online from this page.

## Bihar Board Class 9th Maths Chapter 10 वृत्त Ex 10.6 Books Solutions

 Board BSEB Materials Textbook Solutions/Guide Format DOC/PDF Class 9th Subject Maths Chapter 10 वृत्त Ex 10.6 Chapters All Provider Hsslive

## How to download Bihar Board Class 9th Maths Chapter 10 वृत्त Ex 10.6 Textbook Solutions Answers PDF Online?

2. Click on the Bihar Board Class 9th Maths Chapter 10 वृत्त Ex 10.6 Answers.
3. Look for your Bihar Board STD 9th Maths Chapter 10 वृत्त Ex 10.6 Textbooks PDF.
4. Now download or read the Bihar Board Class 9th Maths Chapter 10 वृत्त Ex 10.6 Textbook Solutions for PDF Free.

Find below the list of all BSEB Class 9th Maths Chapter 10 वृत्त Ex 10.6 Textbook Solutions for PDF’s for you to download and prepare for the upcoming exams:

## BSEB Bihar Board Class 9 Maths Solutions Chapter 10 वृत्त Ex 10.6

प्रश्न 1.
सिद्ध कीजिए कि दो प्रतिछेद करते हुए वृत्तों के केन्द्रों की रेखा दोनों प्रतिच्छेद बिन्दुओं पर समान कोण अन्तरित करती है।
उत्तर:
माना O तथा O’ केन्द्र पाले वृत्त परस्पर A तथा B पर प्रतिच्छेद करते हैं। OO’ रेखाखंठ मिलाया।

∆AOO’ तमा ∆BOO’ में,
OA = OB (केन्द्र O वाले व्रत की विश्वा)
OA = OB (केन्द्र O’ वाले वृत्त की त्रिज्या)
OO’ = OO’ (उभयनिष्ठ)
∆AOO’ ≅ ∆BOO’ (SSS गुणधर्म में)
∠OAO’ = ∠OBO’.

प्रश्न 2.
एक वृत्त की 5 cm तथा 11 cm लम्बी दो जीवाएँ AB और CD समांतर है और केन्द्र की विपरीत दिशा में स्थित हैं। यदि AB और CD के बीच की दूरी 6 cm हो, तो वृत्त की जिज्या ज्ञात कीजिए।
उत्तर:
OM ⊥ AB तथा ON ⊥ CD खींचा तथा OB और OD को मिला।
BM = 𝐴𝐵2 = 52
ND = 𝐶𝐷2 = 112
माना ON = x अत: OM = 6 – x
∆MOB में, OM² + MB² = OB²
(6 – x)² + (52)² = OB²
36 + x² – 12x + 254 = OB² ……. (1)

∆NOD में,
ON² + NO² = OD²
(x)² + (112)² = OD²
⇒ x² + 1214 = OD² …….. (2)
OB = OD (त्रिज्याएँ।)
समो. (1) व (3) से,
36 + x² – 12x + 254 = x² + 1214
⇒ 12x = 36 + 254 – 1214
⇒ 12x = 144+25−1214 = 484 = 12
∴ x = 1
समी. (2) से,
(1)² + (1214) = OD²
OD² = 1 + 1214 = 1254
OD = 52 √5
अतः वृत्त की त्रिज्या = 52 √5 cm

प्रश्न 3.
किसी वृत्त की दो समांतर जीवाओं की लम्बाइयाँ 6 cm और 8 cm हैं। यदि छोटी जीवा केन्द्र से 4 cm की दूरी पर हो, तो दूसरी जीवा केन्द्र से कितनी दूर है?
उत्तर:
माना O वृत्त वाले केन्द्र को दो जीवाएँ AB तथा CD हैं। OB तथा OD को मिलाया।
MB = 𝐴𝐵2 = 6 = 3 cm
∆OMB में, OM² + MB² = OB²
(4)² + (3)² =OB²
⇒ 16 + 9 = OB²
⇒ OB = 5cm
ND = 𝐶𝐷2 = 82 = 4 cm

∆OND में, ON² + ND² = OD²
ON² + (4)² = (5)²,
⇒ ON² = 9
⇒ ON = 3
अत: बड़ी जीवा की केन्द्र से दूरी = 3 cm.

प्रश्न 4.
मान लीजिए कि कोण ∠ABC का शीर्ष एक वृत्त के बाहर स्थित है और कोण की भुजाएँ वृत्त से बराबर जीवाएँ AD और CE काटती हैं। सिद्ध कीजिए कि ∠ABC जीवाओं AC तथा DE द्वारा केन्द्र पर अंतारित कोणों के अन्तर का आया है।
उत्तर:
∠BDC में,
∠ADC = ∠DBC + ∠DCB …….. (1)
हम जानते है केन्द्र पर बना कोण शेष परिधि पर बने कोप का दो गुना होता है।

समी. (1) व (2) से,
12 ∠AOC = ∠ABC + 12 ∠DOE
[∵ ∠DBC = ∠ABC]
⇒ ∠ABC = 12 (∠AOC – ∠DOE)
अत: ∠ABC जीवाओं AC तथा DE द्वारा केन्द्र पर अंतरित कोणों के अन्तर का आया है।

प्रश्न 5.
सिद्ध कीजिए कि किसी समचतुर्भुज की किसी भजा को व्यास मानकर खींचा गया वत्न उसके विकणों के प्रतिच्छेद बिन्दु से होकर जाता है।
उत्तर:
माना ABCD एक समचतुर्भुज है जिसके विकर्ण परस्पर O पर प्रतिच्छेद करते हैं तथा CD को व्यास मानकर वृत्त खींचा। हम जानते है व्यास चाप पर 90° का कोण बनाता है।
∴ COD = 90°
समचतुर्भुज में विकर्ण परस्पर 90 पर प्रतिच्छेद करते हैं।
∠AOB = ∠BOC = ∠COD = ∠DOA = 90°
अता: बिन्दु O वत पर स्थित है।

प्रश्न 6.
ABCD एक समांतर चतुर्भुज है। A, B और C से जाने वाला वृत्त CD (यदि आवश्यक हो तो बड़ाकर) को E पर प्रतिच्छेद करता है। सिद्ध कीजिए कि AE = AD है।
उत्तर:
माना ∆AED एक समद्विबाहु त्रिभुज है।
AE = AD के लिए सिद्ध करना होगा कि ∠AED = ∠ADE.

चूंकि ABCE एक चक्रीय चतुर्भुव है।
∴ ∠AED + ∠ABC = 180° …….. (1)
कि CDE एक सीधी रेखा है।
समी. (1) व (2) से,
∠AED + ∠ABC = ∠ADE + ∠ABC
(∵ ∠ADC = ∠ABC, समाता चतुर्भुज के सम्मुख कोप है।)
∴ ∆AED में, ∠AED = ∠ADE

प्रश्न 7.
AC और BD एक वृत्त की जीवाएं जो परस्पर समद्विभाजित करती हैं। सिद्ध कीजिए:
(i) AC और BD व्यास हैं।
(ii)ABCD एक आयत है।
उत्तर:
(1) माना वस का केन्द्र ‘O’ है तथा इसको जीवाएँ AB व CD हैं।
∆AOB तथा ∆COD में,
OA = OC
(O, AC का मध्य बिन्दु है।)

OB = OD (O, BD का मध्य बिन्दु है)
∠AOB = ∠COD (शीर्षाभिमुख)
∆AOB ≅ ∆COD (SAS गुणधर्म से)
AB = CD

⇒ AC वृत्त को दो भागों में विभाजित करता है।
⇒ AC एक व्यास है, इसी प्रकार BD एक ज्यास है।

(ii) कि ∆AOB ≅ ∆COD
(कपर सिद्ध किया है।)
⇒ ∠OAB अर्थात् ∠CAB = ∠OCD अर्थात् ∠ACD
⇒ AB || CD
∆AOD ≈ ∆BOC
⇒ ABCD एक चीय समांतर चतुर्भुज है।
⇒ ∠DAB = ∠DCB ……. (3)
(समांतर चतुर्भुज के सम्मुख कोण)
ABCD एक चक्रीय चतुर्भुज है।
∴ ∠DAB + ∠DCB = 180° ……. (4)
समो.(3) तथा (4) से, ∠DAB = ∠DCB = 90°
अतः ABCD एक आयत है।

प्रश्न 8.
एक त्रिभुज ARC के कोणों A, B और C के समद्विभाजक इसके परिवृत्त को क्रमश: D, E और F घर प्रतिच्छेद करते हैं। सिद्ध कौजिए कि त्रिभुज DEF के कोण 90° – 12 A, 90° – 12 B तथा 90° – 12 C हैं।
उत्तर:
प्रश्नानुसार, AD, ∠A का अर्जक है।
∴ ∠1 = ∠2 = 𝐴2
तथा BE, ∠B का अईक है।
∴ ∠3 = ∠4 = 𝐵2
तथा CF, ∠C का अईक है।
∴ ∠5 = ∠6 = 𝐶2
समान वृत्तखंड के कोण भी समान होते हैं, अतः
∠9 = ∠3 (AE द्वारा अंतरित कोण) …….. (1)
तथा ∠8 = ∠5 (FA द्वारा अंतरित कोण) ……… (2)

समी (1) तथा (2) को जोड़ने पर,
∠9 = ∠8 = ∠3 + ∠5
⇒ ∠D = 𝐵2 + 𝐶2
इसी प्रकार, ∠E = 𝐵2 + 𝐶2 और ∠F = 𝐴2 + 𝐵2
∆DEF में, ∠D + ∠E + ∠F = 180°
⇒ ∠D = 180° – (∠E + ∠F)
⇒ ∠D = 180° – (𝐴2 + 𝐶2 + 𝐴2 + 𝐵2)
⇒ ∠D = 180° – (𝐴2 + 𝐵2 + 𝐶2) – 𝐴2
⇒ ∠D = 180° – 90° – 𝐴2
[∵ ∠A + ∠B + ∠C = 180°]
⇒ ∠D = 90° – 𝐴2
इसी प्रकार, हम सिद्ध कर सकते हैं कि
∠E = 90° – 𝐵2 तथा ∠F = 90° – 𝐶2

प्रश्न 9.
दो सर्वागसम वृत्त परस्पर बिन्दुओं A और B पर प्रतिच्छेद करते हैं। A से होकर कोई रेखाखण्ड PAQ इस प्रकार खींचा गया है कि P और Q दोनों वृत्तों पर स्थित हैं। सिद्ध कीजिए कि BP = BQ है।
उत्तर:
माना O तथा O’ ‘दो सागसम वृत्तों के केन्द्र हैं। चूंकि AB इन वृत्तों की उभयनिष्ठ जीवा है।

∴ चाप ACB = चाप ADB
⇒ ∠BPA = ∠BQA
= BP = BQ

प्रश्न 10.
किसी त्रिभुज ABC में, यदि ∠A का समद्विभाजक तंधा BC का लम्ब समद्विभाजक प्रतिच्छेद करें, तो सिद्ध कीजिए कि वे ∆ABC के परिवृत्त पर प्रतिच्छेद करेंगे।

उत्तर:
दिया गया है: ABC एक त्रिभुल है तथा जलजसकेसीयों से रोका जाता है।
∠A का अर्दक तथा BC का लम्बअर्द्धक परस्पर P पर प्रतिच्छेद करते हैं।
सिद्ध करना है : त्रिभुज ABC की परिधि बिन्दु P से होकर जाती है।
उपपत्ति: लम्ब अईक पर स्थित कोई बिन्दु भुजा के अन्त बिन्दु से समान दूरी पर है।
∴ BP = PC …….. (1)
यह भी है, ∠1 = ∠2 ……. (2)
[∵ AP, ∠A का अर्द्धक है।]
समी. (1) तथा (2) से,
हम जानते है कि समान वृत्तसण्ड समान कोण अन्तरित करते हैं, जोकि A पर अन्तरित होता है।
अत: BP तथा PC, ∆ABC के परिधि की जीवा तथा चाप BP तथा PC सर्वांगसम वृत्त के भाग है। अतः परिवृत्त पर विचत है। अत: बिन्द A, B, P तथा C समचक्रोष है।

## Bihar Board Class 9th Maths Chapter 10 वृत्त Ex 10.6 Textbooks for Exam Preparations

Bihar Board Class 9th Maths Chapter 10 वृत्त Ex 10.6 Textbook Solutions can be of great help in your Bihar Board Class 9th Maths Chapter 10 वृत्त Ex 10.6 exam preparation. The BSEB STD 9th Maths Chapter 10 वृत्त Ex 10.6 Textbooks study material, used with the English medium textbooks, can help you complete the entire Class 9th Maths Chapter 10 वृत्त Ex 10.6 Books State Board syllabus with maximum efficiency.

## FAQs Regarding Bihar Board Class 9th Maths Chapter 10 वृत्त Ex 10.6 Textbook Solutions

#### Can we get a Bihar Board Book PDF for all Classes?

Yes you can get Bihar Board Text Book PDF for all classes using the links provided in the above article.

## Important Terms

Bihar Board Class 9th Maths Chapter 10 वृत्त Ex 10.6, BSEB Class 9th Maths Chapter 10 वृत्त Ex 10.6 Textbooks, Bihar Board Class 9th Maths Chapter 10 वृत्त Ex 10.6, Bihar Board Class 9th Maths Chapter 10 वृत्त Ex 10.6 Textbook solutions, BSEB Class 9th Maths Chapter 10 वृत्त Ex 10.6 Textbooks Solutions, Bihar Board STD 9th Maths Chapter 10 वृत्त Ex 10.6, BSEB STD 9th Maths Chapter 10 वृत्त Ex 10.6 Textbooks, Bihar Board STD 9th Maths Chapter 10 वृत्त Ex 10.6, Bihar Board STD 9th Maths Chapter 10 वृत्त Ex 10.6 Textbook solutions, BSEB STD 9th Maths Chapter 10 वृत्त Ex 10.6 Textbooks Solutions,
Share: