# HSSlive: Plus One & Plus Two Notes & Solutions for Kerala State Board

## BSEB Class 9 Maths Chapter 15 प्रायिकता Ex 15.1 Textbook Solutions PDF: Download Bihar Board STD 9th Maths Chapter 15 प्रायिकता Ex 15.1 Book Answers

 BSEB Class 9 Maths Chapter 15 प्रायिकता Ex 15.1 Textbook Solutions PDF: Download Bihar Board STD 9th Maths Chapter 15 प्रायिकता Ex 15.1 Book Answers

BSEB Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 Textbooks Solutions and answers for students are now available in pdf format. Bihar Board Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 Book answers and solutions are one of the most important study materials for any student. The Bihar Board Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 books are published by the Bihar Board Publishers. These Bihar Board Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 textbooks are prepared by a group of expert faculty members. Students can download these BSEB STD 9th Maths Chapter 15 प्रायिकता Ex 15.1 book solutions pdf online from this page.

## Bihar Board Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 Books Solutions

 Board BSEB Materials Textbook Solutions/Guide Format DOC/PDF Class 9th Subject Maths Chapter 15 प्रायिकता Ex 15.1 Chapters All Provider Hsslive

## How to download Bihar Board Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 Textbook Solutions Answers PDF Online?

2. Click on the Bihar Board Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 Answers.
3. Look for your Bihar Board STD 9th Maths Chapter 15 प्रायिकता Ex 15.1 Textbooks PDF.
4. Now download or read the Bihar Board Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 Textbook Solutions for PDF Free.

Find below the list of all BSEB Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 Textbook Solutions for PDF’s for you to download and prepare for the upcoming exams:

## BSEB Bihar Board Class 9 Maths Solutions Chapter 15 प्रायिकता Ex 15.1

प्रश्न 1.
एक क्रिकेट मैच में, एक महिला बल्लेबाज खेली गई 30 गेंदों में 6 बार चौका मारती है। चौका न मारे जाने की प्रायिकता ज्ञात कीजिए।
उत्तर:
खेली गई गेदों की संख्या, n(S) = 30
वह गेंद जिन पर महिला ने चौके नहीं मारे
n(E) = 30 – 6 = 24
अतः प्रायिकता p(E) = 𝑛(𝐸)𝑛(𝑆)
= 2430 = 45

प्रश्न 2.
2 बच्चों वाले 1500 परिवारों का यदृच्छया चयन किया गया है और निम्नलिखित आंकड़े लिख लिए गए हैं:

यदृच्छया चुने गए उस परिवार की प्रायिकता ज्ञान कीजिए, जिसमें
(i) दो लड़कियाँ हों (ii) एक लड़की हो (iii) कोई लड़की न हो। साथ ही यह भी जाँच कीजिए कि इन प्रायिकताओं का योग 1 है या नहीं।
उत्तर:
परिवारों की कुल संख्या n(S) = 1500,
(i) दो लड़कियाँ रखने वाले परिवारों की संख्या
n(E1) = 475
∴ एक परिवार में दो लड़कियां होने की प्रायिकता
p(E1) = 𝑛(𝐸1)𝑛(𝑆)
= 4751500 = 1960

(ii) एक लड़की रखने वाले परिवारों की संख्या
n(E2) = 814
एक परिवार में एक लड़की के होने की प्रायिकता
n(E2) = 𝑛(𝐸2)𝑛(𝑆)
= 8141500 = 407750

(iii) कोई भी लड़की न रखने वाले परिवारों की संख्या
n(E3) = 211
बिना लड़की वाले परिवारों को प्रायिकता
𝑛(𝐸3)𝑛(𝑆) = 𝑛(𝐸3)𝑛(𝑆) = 2111500
∴ कुल प्रायिकता = तीनों प्रायिकताओं का योग
= 1960 + 407750 + 2111500 = 15001500 = 1

प्रश्न 3.
अध्याय 14 के अनुच्छेद 14.4 का बाहरण 5 सौजिए। कक्षा के किसी एक विद्यार्थी का जन्म अगस्त में होने की प्रायिकता ज्ञात कीजिए।
उत्तर:
कुल विद्यार्थियों की संख्या n(S) = 40
अगस्त में जन्म लेने वाले विद्यार्थीयों की कुल संख्या
n(E) = 6
∴ अभीष्ट प्राषिकता, p (E) = 𝑛(𝐸)𝑛(𝑆) = 640 = 230

प्रश्न 4.
तीन सिक्कों को एक साथ 200 बार उछाला जाता है तथा इनमें विभिन परिणामों की वारंवारताएं ये हैं :

यदि तीनों सिक्कों को पन: एक साथ जठाला जाए तो दो चित के आने की प्रायिकता ज्ञात कीजिए।
उत्तर:
तीन सिक्कों को एक साथ उडालने की कुल संख्या n(S) = 200
दो चित आने की प्रायिकता n(E) = 72
∴ अभीष्ट प्रायिकता p(E) = 𝑛(𝐸)𝑛(𝑆) = 72200 = 925.

प्रश्न 5.
एक कंपनी ने यदृच्छया 2400 परिवार चुनकर एक घर की आय सार और वाहनों की संख्या के बीच संबंध स्थापित करने के लिए उनका सर्वेक्षण किया। एकषित किए गए आंकड़े नीचे सारणी में दिए गए हैं।

मान लीजिए एक परिवार चुना गया है। प्रायिकता ज्ञात कीजिए कि चुने गए परिवार
(i) की आय Rs 10000-13000 प्रति माह है और उसके पास केवल दो वाहन है।
(ii) की आय प्रति माह Rs 16000 या इससे अधिक है और उसके पास केवल 1 वाहन है।
(iii) की आव Rs 7000 प्रति माह से कम है और उसके पास कोई वाहन नहीं है।
(iv) की आयर 13010-16000 प्रति माह के अन्तराल में है और उसके पास 2 से अधिक वाहन हैं।
(v) जिसके पास 1 से अधिक वाहन नहीं है।
उत्तर:
कम्पनी द्वारा चुने गये कुल परिवारों की संख्या,
n(S) = 2400
(i) दो बाहन रखने वाले परिवारों की संख्या
n(E1) = 29
∴ अभीष्ट प्रायिकता p(E1) = 𝑛(𝐸1)𝑛(𝑆) = 292400

(ii) एक वाहन रखने वाले परिवारों की संख्या
n(E2) = 579
∴ अभीष्ट प्रायिकता p(E2) = 𝑛(𝐸2)𝑛(𝑆) = 5792400

(iii) वाहन नहीं रखने वाले परिवारों की संख्या
n(E3) = 10
∴ अभीष्ट प्रायिकता p(E3) = 𝑛(𝐸3)𝑛(𝑆) = 102400 = 1240

(iv) दो से अधिक साइन रखने वाले परिवारों की संख्या
n(E4) = 25
∴ अभीष्ट प्रायिकता p(E4) = 𝑛(𝐸4)𝑛(𝑆) = 252400 = 196

(v) वह परिवार जिसके पास 1 से अधिक वाहन नहीं है n(E5) = जान नहीं रखने वाले परिवार + एक वाहन वाले परिवार
= (10 + 0 + 1 + 2 + 1) + (160 + 305 + 535 + 469 + 579) = 2062
अतः अभीष्ट प्रायिकता p(E5) = 𝑛(𝐸5)𝑛(𝑆) = 20622400 = 10311200

प्रश्न 6.
अध्याय 14 की सारणी 14.7 लीजिए।
(i) गणित की परीक्षा में एक विद्यार्थी द्वारा 20% कम अंक प्राप्त करने की प्रायिकता ज्ञात कीजिए।
(ii) एक विद्यार्थी द्वारा 60 या इससे अधिक अंक प्राप्त करने की प्रायिकता ज्ञात कीजिए।
उत्तर:
कुल विद्यार्थियों की संख्या n(S) = 90
(i) 20 अंक से कम अंक प्राप्त करने वाले विद्यार्थी
n(E1) = 7
∴ अभीष्ट प्रायिकता p(E1) = 𝑛(𝐸1)𝑛(𝑆) = 790

(ii) 60 या इससे अधिक अंक प्राप्त करने वाले विद्यार्थी
n(E2) = 15 + 8 = 23
∴ अभीष्ट प्राविकता p(E2) = 𝑛(𝐸2)𝑛(𝑆) = 2390

प्रश्न 7.
सांख्यिकी के बारे में विद्यार्थियों का मत जानने के लिए 200 विद्यार्थियों का सर्वेक्षण किया गया। प्राप्त आंकड़ों को नीचे दी गई सारणी में लिख लिया गया है।

प्राधिकता ज्ञात कीजिए कि बच्छया चुना गया विद्यार्थी
(i) सांख्यिकी पसंद करता है.
(ii) सांख्यिकी पसंद नहीं करता है।
उत्तर:
विद्यार्थियों की कुल संख्या, n(S) = 200
(i) सोख्यिकी पसन्द करने वाले विद्यार्थियों की संख्या
n(E1) = 135
∴ अभीष्ट प्रायिकता p(E1) = 𝑛(𝐸1)𝑛(𝑆) = 135200 = 2740

(ii) सांख्यिकी न पसन्द करने माले विद्यार्थियों की संख्या
n(E2) = 65
∴ अभीष्ट प्रायिकता p(E2) = 𝑛(𝐸2)𝑛(𝑆) = 65200 = 1340

प्रश्न 8.
प्रश्नावली 14.2 का प्रश्न 2 देखिए। इसको अनुभाविक प्रायिकता क्या होगी कि इंजीनियर
(i) अपने कार्यशाला से 7 km से कम दूरी पर रहती है ?
(i) अपने कार्यस्थल से 7 km या इससे अधिक दूरी पर रहते है?
(iii) अपने कार्यस्थल से 12 km या इससे कम दूरी पर रहते है?
उत्तर:
इंजीनियरों की कुल संख्या n(S) = 40
(i) 7 किमी से दूर रहने वाले इंजीनियरों की संख्या
n(E1) = 9
∴ अभीष्ट प्रायिकता p(E1) = 𝑛(𝐸1)𝑛(𝑆) = 940

(ii) 7 किमी या उससे अधिक दूरी पर रहने वाले इंजीनियरों की संख्या
n(E2) = 9
∴ अभीष्ट प्रायिकता p(E2) = 𝑛(𝐸2)𝑛(𝑆) = 1340

(ii) किमो या इससे कम दूरी पर रहने वाले इंजीनियरों की संख्या
n(E3) = 9
∴ अभीष्ट प्रायिकता p(E3) = 𝑛(𝐸3)𝑛(𝑆) = 040 = 0

प्रश्न 9.
क्रियाकलाप : अपने विद्यालय के गेट के सामने से एक समय-अंतराल में गुजरने वाले दो पहिया, तीन पहिया और चार पहिया वाहनों की बारंबारता लिख लीजिए। आष द्वारा देखे गए वाहनों में से किसी एक वाहन का दो पहिया वाइन होने की प्रायिकता ज्ञात कीजिए।
उत्तर:
स्वयं आँकड़े एकत्रित करें तथा अभीष्ट प्रायिकता प्राप्त करें।

प्रश्न 10.
क्रियाकलाप : आप अपनी कक्षा के विद्यार्थियों से एक 3 अंक वाली संख्या लिखने को काहिए। आप कक्षा से एक विद्यार्थी को यदृच्छया चुन लीजिए। इस बात की प्रायिकता क्या होगी कि उसके द्वारा लिखी गई संख्या 3 से भाज्य है? याद रखिए कि कोई संख्या 3 से भाज्य होती है, यदि उसके अंकों का योग 4 से भाज्य हो।
उत्तर:
समस्या : स्वयं ओंकड़े एकत्रित करें तथा अभीष्ट प्राषिकता ज्ञात करें।

प्रश्न 11.
आटे की जन ग्यारह थैलियों में, जिन पर 5 kg अंकित है, वास्तव में आटे के निम्नलिखित भार (kg में) हैं:

बच्च्या चुनी गई एक प्रैली में 5 kg से अधिक आटा होने की प्रायिकता क्या होगी?
उत्तर:
पैलियों की कुल संख्या n(S) = 11
5 kg से अधिक वजन वाली थैलियाँ n(E) = 7
∴ अभीष्ट प्राविकता = p(E) = 𝑛(𝐸)𝑛(𝑆) = 711

प्रश्न 12.
प्रश्नावली 14.2 के प्रश्न 5 में आपसे 30 दिनों तक एक नगर की प्रति वायु में सल्फर डाइ-आक्साइड की भाग प्रति मिलियन में सांद्रता से संबंधित एक बारंबारता बंटन सारणी बनाने के लिए कहा गया था। इस सारणी की सहायता से इनमें से किसी एक दिन अंतराल (0.12 – 0.16) में सल्फार डाइ-ऑक्साइड के सांद्रण होने की प्राषिकता ज्ञात कीजिए।
उत्तर:
दिनों की कुल संख्या, n(S) = 30, दिए गए वर्ग-अन्तराल में SO2 की सांगता n(E) = 2
∴ अभीष्ट प्राविकता = p(E) = 𝑛(𝐸)𝑛(𝑆) = 230 = 115

प्रश्न 13.
प्रश्नावली 14.2 के प्रश्न 1 में आपसे एक कक्षा के 30 विद्यार्थियों के रक्त-समूह से संबंधित बारंबारता बंटन सारणी बनाने के लिए कहा गया था। इस सारणी की सहायता से इस कक्षा में यदच्छया चुने गए एक विद्याओं का रक्त समूह AB होने की प्राविकता ज्ञात कीजिए।
उत्तर:
विद्यार्थियों की कुल संख्या n(S) = 30
रक्त समूह AB रखने वाले विद्यार्थियों की संख्या n(E) = 3
∴ अभीष्ट प्राविकता = p(E) = 𝑛(𝐸)𝑛(𝑆) = 330 = 110

## Bihar Board Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 Textbooks for Exam Preparations

Bihar Board Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 Textbook Solutions can be of great help in your Bihar Board Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 exam preparation. The BSEB STD 9th Maths Chapter 15 प्रायिकता Ex 15.1 Textbooks study material, used with the English medium textbooks, can help you complete the entire Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 Books State Board syllabus with maximum efficiency.

## FAQs Regarding Bihar Board Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 Textbook Solutions

#### Can we get a Bihar Board Book PDF for all Classes?

Yes you can get Bihar Board Text Book PDF for all classes using the links provided in the above article.

## Important Terms

Bihar Board Class 9th Maths Chapter 15 प्रायिकता Ex 15.1, BSEB Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 Textbooks, Bihar Board Class 9th Maths Chapter 15 प्रायिकता Ex 15.1, Bihar Board Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 Textbook solutions, BSEB Class 9th Maths Chapter 15 प्रायिकता Ex 15.1 Textbooks Solutions, Bihar Board STD 9th Maths Chapter 15 प्रायिकता Ex 15.1, BSEB STD 9th Maths Chapter 15 प्रायिकता Ex 15.1 Textbooks, Bihar Board STD 9th Maths Chapter 15 प्रायिकता Ex 15.1, Bihar Board STD 9th Maths Chapter 15 प्रायिकता Ex 15.1 Textbook solutions, BSEB STD 9th Maths Chapter 15 प्रायिकता Ex 15.1 Textbooks Solutions,
Share: