# HSSlive: Plus One & Plus Two Notes & Solutions for Kerala State Board

## AP Board Class 9 Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbook Solutions PDF: Download Andhra Pradesh Board STD 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Book Answers

 AP Board Class 9 Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbook Solutions PDF: Download Andhra Pradesh Board STD 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Book Answers

## Andhra Pradesh State Board Class 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Books Solutions

 Board AP Board Materials Textbook Solutions/Guide Format DOC/PDF Class 9th Subject Maths Chapters Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Provider Hsslive

## How to download Andhra Pradesh Board Class 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbook Solutions Answers PDF Online?

2. Click on the Andhra Pradesh Board Class 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Answers.
3. Look for your Andhra Pradesh Board STD 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbooks PDF.
4. Now download or read the Andhra Pradesh Board Class 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbook Solutions for PDF Free.

## AP Board Class 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbooks Solutions with Answer PDF Download

Find below the list of all AP Board Class 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbook Solutions for PDF’s for you to download and prepare for the upcoming exams:

## AP State Syllabus 9th Class Maths Solutions 10th Lesson Surface Areas and Volumes Exercise 10.3

Question 1.
The base area of a cone is 38.5 cm Its volume is 77 cm3. Find its height.
Solution:
Base area of the cone, πr2 = 38.5 cm2
Volume of the cone, V = 13 πr2 h = 77
πr2 = 38.5
227 r2 = 38.5
r2 = 38.5 x 722
r2 = 12.25
r = 12.25‾‾‾‾‾√ = 3.5
V= 122 x 227 x 3.5 x 3.5 x h = 77
∴ h = 77×3×722×12.25 = 6
∴ Height of the cone = 6 cm

Question 2.
The volume of a cone is 462 m3. Its base radius is 7 m. Find its height.
Solution:
The volume of a cone”V’= 13 πr2 h = 462
Height = h (say)
13 x 227 x 7 x h = 462
h = 462×322×7 = 9
∴ Height = 9m

Question 3.
Curved surface area of a cone is 308 cm2 and its slant height is 14 cm. Find (1) radius of the base (ii) total surface area of the cone.
Solution:
C.S.A. of the cone, πrl = 308
Slant height, l = 14 cm
i) πrl = 308; l = 14 cm
227 x r x 14 = 308
r = 30844 = 7cm

ii) T.S.A. = πrl + πr2
= πr (r + l) = 227 x 7 x (7 + 14)
= 22 x 21 = 462 cm3

Question 4.
The cost of painting the total surface area of a cone at 25 paise per cm2 is ₹176. Find the volume of the cone, if its slant height is 25 cm.
Solution:
Slant height of the cone, l = 25 cm
Total cost at the rate of 25 p/cm2
= ₹176
∴ Total surface area of the cone
= 17625 x 100 = 176 x 4 = 704cm2
But T.S.A. of the cone = πr (r + l) = 704
Thus 227r(r + 25) = 704
r(r + 25) = 704×722 = 224
r2 + 25r = 224
⇒ r2 + 32r – 7r – 224 = 0
⇒ r (r + 32) – 7 (r + 32) = 0
⇒ (r + 32) (r – 7) = 0
⇒ r = 7 (∵ ’r’ can’t be negative)

∴ Volume of the cone = 13 πr2h
= 13 x 227 x 7 x 7 24
= 22 x 7 x 8 = 1232cm3

Question 5.
From a circle of radius 15 cm, a sector with angle 216° is cut out and its bounding radii are bent so as to form a cone. Find its volume.
Solution:
Radius of the sector, ‘r’ = 15 cm
Angle of the sector, ‘x’ = 216°
∴ Length of the arc, l = 𝑥360 x 2πr
=2163602𝜋𝑟=35(2𝜋𝑟)
Perimeter of the base of the cone = Length of the arc
2πr of cone = =65 πr of the circle
Radius of the cone ‘r’ = 35 x 15 = 9
Radius ‘r’ of the circle = slant height l of the cone = 9 cm

= 1018.3 cm3

Question 6.
The height of a tent is 9 m. Its base diameter is 24 m. What is its slant height ? Find the cost of canvas cloth required if it costs ₹14 per sq.m.
Solution:
Height of a conical tent ‘h’ = 9 m
Base diameter = 24 m
Thus base radius ’r’= 𝑑2=242 = 12m
Cost of canvas = ₹ 14 per sq.m.
C.S.A. of the cone = πrl

Question 7.
The curved surface area of a cone is 115957 cm2. Area of its base is 254 47 cm2. Find its volume.
Solution:
C.S.A. of the cone = πrl

Question 8.
A tent is cylindrical to a height of 4.8 m and conical above it. The ra¬dius of the base is 4.5 m and total height of the tent is 10.8 m. Find the canvas required for the tent in square
meters.
Solution:

Radius of cylinder, l = 4.5 m
Height of the cylinder = h = 4.8 m
∴ C.S.A. of the cylinder = 2πrh
= 2 x 227 x 4.5 x 4.8
= 135.771 m2
Radius of the cone ‘r’ =
Radius of the cylinder = 4.5 m
Height of the cone ’h’ = 10.8 – 4.8 = 6 m
∴ Slant height of the cone

∴ C.S.A. of the cone = πrl
= 227 x 4.5 x 7.5
= 742.57 = 106.071m2
∴ Total canvas required
= C.S.A of cylinder + C.S.A. of cone
= 135.771 + 106.071
= 241.842 m2

Question 9.
What length of tarpaulin 3 m wide will be required to make a conical tent of height 8 m and base radius 6m? Assume that extra length of material that will be required for stitching margins and wastage in cutting is approximately 20 cm (use π = 3.14) [Note : Take 20 cm as 0.6 m2]
Solution:
Radius of the cone, r = 6 m
Height of the cone, h = 8 m

∴ C.S.A. = πrl = 3.14 x 6 x 10 = 188.4 m2
Let the length of the tarpaulin = l
∴ Area of the tarpaulin, lb = 188.4 + 0.6
= 189 m2
⇒ 3l = 189
⇒ l = 1893 = 63m

Question 10.
A joker’s cap is in the form of a right circular cone of base radius 7 cm and height 27 cm. Find the area of the sheet required to make 10 such caps.
Solution:
Radius of the cone, r = 7 cm
Height of the cone, h = 27 cm
Slant height of the cone (l)

∴ Total area of the sheet required for
10 caps = 10 x 22 778‾‾‾‾√
= 6136.383 cm2

Question 11.
Water is pouring into a conical vessel (as shown in the given figure), at the rate of 1.8 m3 per minute. How long will it take to fill the vessel?

Solution:
From the figure, diameter of the cone 5.2 m
Thus its radius ’r’ = 5.22 = 2.6 m
∴ Height of the cone = h = 6.8 m
Volume of the cone = 13 πr2 h
= 13×227 x 2.6 x 2.6 x 6.8
= 1011.29621
= 48.156 m3
Quantity of water that flows per minute
= 1.8 m3
∴ Total time required =  Total volume 1.8
= 48.1561.8 = 26.753
27 minutes.

Question 12.
Two similar cones have volumes 12π CU. units and 96π CU. units. If the curved surface area of smaller cone is 15π sq.units, what is the curved surface area of the larger one?
Solution:

πrl = 15 π
𝑟(𝑟2+ℎ2)‾‾‾‾‾‾‾‾‾√=15
Squaring on both sides
r2 (r2 + h2) = 15 x 15
= 3 x 5 x 3 x 5
= 3 x 3 x 25
r2(r2 + h2) = 32(32 + 42)
∴ r = 3 cm, h = 4 cm
C.S.A. = π x 3 x (32+42‾‾‾‾‾‾‾√) = 15π
13πr2H = 96π
3×3×H3 = 96
∴ H = 963 = 32 units

## Andhra Pradesh Board Class 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbooks for Exam Preparations

Andhra Pradesh Board Class 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbook Solutions can be of great help in your Andhra Pradesh Board Class 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 exam preparation. The AP Board STD 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbooks study material, used with the English medium textbooks, can help you complete the entire Class 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Books State Board syllabus with maximum efficiency.

## FAQs Regarding Andhra Pradesh Board Class 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbook Solutions

#### Can we get a Andhra Pradesh State Board Book PDF for all Classes?

Yes you can get Andhra Pradesh Board Text Book PDF for all classes using the links provided in the above article.

## Important Terms

Andhra Pradesh Board Class 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3, AP Board Class 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbooks, Andhra Pradesh State Board Class 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3, Andhra Pradesh State Board Class 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbook solutions, AP Board Class 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbooks Solutions, Andhra Pradesh Board STD 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3, AP Board STD 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbooks, Andhra Pradesh State Board STD 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3, Andhra Pradesh State Board STD 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbook solutions, AP Board STD 9th Maths Chapter 10 Surface Areas and Volumes Ex 10.3 Textbooks Solutions,
Share: