![]() |
BSEB Class 6 Maths Chapter 12 बीजगणित Textbook Solutions PDF: Download Bihar Board STD 6th Maths Chapter 12 बीजगणित Book Answers |
Bihar Board Class 6th Maths Chapter 12 बीजगणित Textbooks Solutions PDF
Bihar Board STD 6th Maths Chapter 12 बीजगणित Books Solutions with Answers are prepared and published by the Bihar Board Publishers. It is an autonomous organization to advise and assist qualitative improvements in school education. If you are in search of BSEB Class 6th Maths Chapter 12 बीजगणित Books Answers Solutions, then you are in the right place. Here is a complete hub of Bihar Board Class 6th Maths Chapter 12 बीजगणित solutions that are available here for free PDF downloads to help students for their adequate preparation. You can find all the subjects of Bihar Board STD 6th Maths Chapter 12 बीजगणित Textbooks. These Bihar Board Class 6th Maths Chapter 12 बीजगणित Textbooks Solutions English PDF will be helpful for effective education, and a maximum number of questions in exams are chosen from Bihar Board.Bihar Board Class 6th Maths Chapter 12 बीजगणित Books Solutions
Board | BSEB |
Materials | Textbook Solutions/Guide |
Format | DOC/PDF |
Class | 6th |
Subject | Maths Chapter 12 बीजगणित |
Chapters | All |
Provider | Hsslive |
How to download Bihar Board Class 6th Maths Chapter 12 बीजगणित Textbook Solutions Answers PDF Online?
- Visit our website - Hsslive
- Click on the Bihar Board Class 6th Maths Chapter 12 बीजगणित Answers.
- Look for your Bihar Board STD 6th Maths Chapter 12 बीजगणित Textbooks PDF.
- Now download or read the Bihar Board Class 6th Maths Chapter 12 बीजगणित Textbook Solutions for PDF Free.
BSEB Class 6th Maths Chapter 12 बीजगणित Textbooks Solutions with Answer PDF Download
Find below the list of all BSEB Class 6th Maths Chapter 12 बीजगणित Textbook Solutions for PDF’s for you to download and prepare for the upcoming exams:Bihar Board Class 6 Maths बीजगणित Ex 12.1
प्रश्न 1.
तीलियों से निम्न प्रतिरूप बनाने के लिए आवश्यक तीलियों की संख्या के लिए नियम ज्ञात कीजिए। नियम लिखने के लिए एक चर का प्रयोग कीजिए :
हल :
(a) U के लिए:
उपरोक्त आकृति से स्पष्ट है कि एक U बनाने में 3 माचिस की तीलियों का प्रयोग किया गया है।
अतः नियम होगा :
वांछित माचिस की तीलियों की संख्या = 3n, जहाँ n का मान 1, 2, 3….. ले सकते हैं।
(b) Z के लिए:
उपरोक्त आकृति से स्पष्ट है कि एक Z बनाने में 3 माचिस की तीलियों का प्रयोग किया गया है।
अत: नियम होगा :
वांछित माचिस की तीलियों की संख्या = 3n, जहाँ n का मान 1, 2, 3….. ले सकते हैं।
(c) B के लिए :
उपरोक्त आकृति से स्पष्ट है कि एक B बनाने में 5 माचिस की तीलियों का प्रयोग किया गया है।
अतः नियम होगा :
वांछित माचिस की तीलियों की संख्या = 5n, जहाँ n का मान 1, 2, 3,…..ले सकते हैं।
(d) S के लिए :
उपरोक्त आकृति से स्पष्ट है कि एक S बनाने में 5 माचिस की तीलियों का प्रयोग किया गया है।
अतः नियम होगा :
वांछित माचिस की तीलियों की संख्या = 5n, जहाँ n का मान 1, 2, 3….. ले सकते हैं।
(e) A के लिए:
उपरोक्त आकृति से स्पष्ट है कि एक A बनाने में 6 माचिस की तीलियों का प्रयोग किया गया है।
अतः नियम होगा :
वांछित माचिस की तीलियों की संख्या = 6n, जहाँ n का मान 1, 2, 3….. ले सकते हैं।
प्रश्न 2.
गणतंत्र दिवस के अवसर पर बच्चे मुख्य अतिथि के सम्मुख सामूहिक ड्रिल का प्रदर्शन कर रहे हैं। एक पंक्ति में 10 बच्चे हैं। यदि पंक्तियों की संख्या ज्ञात हो, तो बच्चों की संख्या प्राप्त करने के लिए क्या नियम है? (पंक्तियों की संख्या के लिए a का प्रयोग कीजिए)।
हल :
यदि पंक्तियों की संख्या मानलिया जाए तथा एक पंक्ति में बच्चों की संख्या 10 हो तो तो बच्चों की संख्या प्राप्त करने के लिए नियम 10a होगा।
प्रश्न 3.
एक टोकरी में 60 केले हैं आप टोकरियों की संख्या के पदों में केले की कुल संख्या को किस प्रकार लिखेंगे? टोकरियों की संख्या के लिए b का प्रयोग कीजिए-
हल :
एक टोकरी में केले की संख्या 60 है।
और मान लिया कि टोकरियों की संख्या b है।
तब टोकरियों की संख्या के पदों में केले की कुल संख्या 60 × b = 60b होगी।
प्रश्न 4.
लोकेश अपनी कक्षा के प्रत्येक विद्यार्थी को जन्म दिन के उपलक्ष्य पर 2 टॉफियाँ बाँटता है। विद्यार्थियों की संख्या ज्ञात होने पर क्या आप कुल टॉफियों की संख्या बता सकते हैं? विद्यार्थियों की संख्या के लिए m का प्रयोग कीजिए।
हल :
प्रत्येक विद्यार्थी को 2 टॉफी दिया जाता है।
माना कि विद्यार्थियों की संख्या m हो, तब,
विद्यार्थियों की संख्या m होने पर आवश्यक टॉफियों की संख्या 2 × m = 2m होगी।
प्रश्न 5.
सीमा गुड़िया की बड़ी बहन है। सीमा गुड़िया से 5 वर्ष बड़ी है
(a) क्या आप सीमा की आयु :गुड़िया की आयु के पदों में लिख सकते हैं?
(b) क्या आप गुड़िया की आयु सीमा की आयु के पदों में लिख सकते हैं?
हल :
माना कि गुड़िया की आयु x वर्ष हो तब
(a) तब सीमा की आयु गुड़िया से 5 वर्ष अधिक है।
सीमा की आयु = (x + 5) वर्ष।
अतः सीमा की आयु गुड़िया की आयु के पदों में (x + 5) वर्ष होगी।
(b) माना कि सीमा की आयु वर्ष है
प्रश्न से सीमा गुड़िया से 5 वर्ष बड़ी है
सीप की आयु = गुड़िया की आयु + 5
y = गुड़िया की आयु + 5
गुड़िया की आयु = y – 5
प्रश्न 6.
अमरुद की बड़ी टोकरियों में से छोटी टोकरियों में अमरुद को रखा जाना है। जब एक बड़ी टोकरी को खाली किया जाता है तो उसके अमरुदों से तीन छोटी टोकरियाँ भर जाती है और फिर भी 25 अमरुदें शेष रह जाते हैं। यदि एक छोटी टोकरी में अमरुदों की संख्या को x लिया जाय, तो बड़ी। टोकरी में अमरुदों की संख्या क्या है?
हल :
माना कि यदि एक छोटी टोकरी में अमरुदों की संख्या x लिया जाय तो 3 छोटी टोकरियों में अमरुदों की संख्या 3x होगी
प्रश्न से, एक बड़ी टोकरी में अमदों की संख्या = 3 × x + 25
अर्थात् 3x + 25 होगी।
प्रश्न 7.
(a) अलग-अलग लम्बाई के तीलियों से बने हुए आयतों के नीचे दिए हुए प्रतिरूपों को देखिए (अकृति 2) ये आयत अलग-अलग नहीं है। दो संलग्न आयतों में एक तं नी उभयनिष्ठ है। इस प्रतिरूप को देखिए और वह नियम ज्ञात कीजिए जो आयतों की संख्या के पदों में आवश्यक तीलियों की संख्या देता है।
(b) तीलियों से त्रिभुजों का एक प्रतिरूप (आकृति-3) दर्शा रही है उपरोक्त प्रश्न 7(a) की तरह वह व्यापक नियम ज्ञात कीजिए जो त्रिभुज की संख्या के पदों में आवश्यक तीलियों की संख्या देता है।
हल :
(a) एक आयत को बनाने में आवश्यक तीलियों की संख्या 4 होती है जबकि दो आयत के बनाने में आवश्यक तीलियों की संख्या 7 होती है क्योंकि ये दोनों आयत अलग-अलग नहीं हैं ये आयत संलग्न है जिसके कारण एक तीली उभयनिष्ठ है । उभयनिष्ठ होने के कारण दो आयत बनाने पर एक तीली की संख्या कम हो जाती है। तथा 7 को (2 × 4 – 1) लिख सकते हैं।
तीन आयत बनाने में दो तीली उभयनिष्ठ होती है जिसके कारण इन्हें बनाने में आवश्यक तीलियों की संख्या 10 होती है। 10 को (3 × 4 – 2)
चार आयत बनाने में तीन तीलियाँ उभयनिष्ठ होती है जिसके कारण इन्हें बनाने में आवश्यक तीलियों की संख्या 13 अर्थात् (4 × 4 – 3) होती है।
इस प्रकार हम देखते हैं कि n उभयनिष्ठ आयत को बनाने के लिए आवश्यक तीलियों की संख्या {n × 4 – (n – 1)}
= 4n – n + 1 = 3n + 1 होता है।
(b) एक त्रिभुज बनाने के लिए आवश्यक तीलियों की संख्या 3 होती है। दो त्रिभुज बनाने पर एक तीली उभयनिष्ठ हो जाने के कारण तीलियों की संख्या 5 अर्थात् (2 × 3 – 1) होती है।
तीन त्रिभुज बनाने पर तीली उभयनिष्ठ हो जाने के कारण तीलियों की संख्या 7 अर्थात (3 × 3 – 2) होती है।
चार त्रिभुज बनाने पर तीन तीलियाँ उभयनिष्ठ हो जाने के कारण तीलियों की संख्या 9 अर्थात् (4 × 3 – 3) होती है।
इस प्रकार हम देखते हैं कि n उभयनिष्ठ त्रिभुजों को बनाने के लिए आवश्यक तीलियों की संख्या {n × 3 – (n – 1)}
अर्थात् (3n – n + 1) = 2n + 1 होगा।
Bihar Board Class 6 Maths बीजगणित Ex 12.2
प्रश्न 1.
तीन संख्याओं 15, 28 और 14 के योग पर विचार कीजिए। हम यह योग दो प्रकार से प्राप्त कर सकते हैं।
(a) हम पहले 15 और 28 को जोड़कर 43 प्राप्त कर सकते हैं और 43 में 14 जोड़कर कुल योग 57 प्राप्त कर सकते हैं।
(b) हम पहले 28 और 14 को जोड़कर 42 प्राप्त कर सकते हैं और फिर इसे 15 में जोड़कर कुल योग 57 प्राप्त कर सकते हैं।
इस प्रकार (15 + 28) + 14 = 15 + (28 + 14) हआ।
ऐसा किसी भी तीन संख्याओं के लिए किया जा सकता है। यह गुण संख्याओं के योग का साहचर्म (Associative) गुण कहलाता है। इस गुण को चर a, b और c का प्रयोग करते हुए एक व्यापक रूप में व्यक्त कीजिए।
उत्तर
(a + b) + c = a + (b + c)
प्रश्न 2.
समबाहु त्रिभुज की एक भुजा को k से दर्शाया जाता है। इस समबाहु त्रिभुज के परिमाप को k का प्रयोग करते हुए व्यक्त कीजिए।
उत्तर
हम जानते हैं कि समबाहु त्रिभुज तीन भुजाओं से बनी होती है।
समबाह त्रिभज की एक भजा है।
समबाहु त्रिभुज़ का परिमाप = भुजाओं की लम्बाइयों का योग = k + k + k = 3k
प्रश्न 3.
एक समषड्भुज (Regular hexagon) (आकृति-6) की एक भुजा को p से व्यक्त किया गया है। p का प्रयोग करते हुए समषड्भुज के परिभाप को व्यक्त कीजिए। (संकेत- एक समषड्भुज की सभी भजाएँ बराबर होती हैं और सभी कोण बराबर होते हैं।
उत्तर
समषड्भुज का परिमाप = षड्भुज भुजाओं की लम्बाइयों का भाग
= P + P + P + P + P + P
= 6P
प्रश्न 4.
घन (Cube) एक त्रिविमीय (Three dimensional) आकृति है, जैसा कि आकृति 7 में दिखाया गया है। इसके 6 फलक होते हैं और ये सभी सर्वसम। (identical) वर्ग होते हैं। घन के एक किनारे की लम्बाई l से दी जाती है। घन के किनारों की कुल लम्बाई के लिए एक सूत्र ज्ञात कीजिए।
उत्तर
घन का परिमाप = 16
भुजाओं की लम्बाइयों का योग = l + l + l + l + l + l + l + l + l + l + l + l + l + l + l + l = 16l
प्रश्न 5.
वृत का व्यास वह रेखाखंड है जो वृत्त पर स्थित दो बिन्दुओं को जोड़ता है और उसके केन्द्र से होकर जाता है। वृत्त की त्रिज्या (r) उस पर स्थित किसी बिन्दु p को केन्द्र c से जोड़ने वाली रेखाखंड की लम्बाई है। संलग्न आकृति-8 में AB वृत्त का व्यास है और C उसका केन्द्र है। वृत्त के व्यास (d) को उसकी त्रिज्या (r) के पदों में व्यक्त कीजिए।
उत्तर
वृत्त का व्यास = PC + AC
d = r + r = 2r
Bihar Board Class 6 Maths बीजगणित Ex 12.3
प्रश्न 1.
आप तीन संख्याओं 7, 10 और 12 से संख्याओं वाले (चर नहीं) जितने व्यंजक बना सकते हैं बनाइए| एक संख्या का एक से अधिक बार प्रयोग नहीं किया जाना चाहिए। केवल योग, व्यवकलन (घटाना) और गुणन संक्रियाओं का ही प्रयो, करें। (उदाहरणार्थ 10 + 7 – 12)
उत्तर
10 + 7 – 12
प्रश्न 2.
निम्नलिखित में से कौन-से केवल संख्याओं वाले व्यंजक है?
(a) x + 5
(b) 10 × 9 – 7
(c) 5 × 4 – zy
(d) 7y
(e) 9 – 9z
(f) 5 × 17 – 4 × 16 + 3x
उत्तर
(b) 10 × 9 – 7
प्रश्न 3.
निम्न व्यंजकों को बनाने में प्रयुक्त संक्रियाओं (योग, व्यवकलन, गुणन, विभाजन) को देखिए’ और बताइए कि ये व्यंजक किस प्रकार बनाए गए हैं?
(a) x + 9
(b) x – 9
(c) 13y
(d) 𝑦13
(e) 2y + 15
(f) 2y – 15
(g) 7p
(h) -7p + 2
(i) -7p – 3
उत्तर
(a) योग
(b) घटाय
(c) गुणम
(d) विभाजन
(e) गुणनयोग
(f) गुणन-घटाव
(g) गुणन
(h) गुणन-योग
(i) गुणन-घटाव
प्रश्न 4.
निम्नलिखित स्थितियों के लिए व्यंजक दीजिए-
(a) 4 में 5 जोड़ना
(b) a में 5 घटाना
(c) a को 5 से गुणा करना
(d) a को 5 से भाग देना
(e) m में से 7 घटाना
(f) -m को 7 से गुणा करना
(g) -m को 7 से भाग देना
(h) m को -5 से गुणा करना
उत्तर
(a) a + 5
(b) a – 5
(c) 5a
(d) 𝑎5
(e) m – 7
(f) -7m
(g) −𝑚7
(h) -5m
प्रश्न 5.
निम्नलिखित स्थितियों के लिए व्यंजक दीजिए-
(a) m के 7 गुणा में 6 जोड़ना
(b) 24 में 13 जोड़ना
(c) x का -5 से गुणा करना
(d) x को -5 से गुणा करके परिणाम में 10 जोड़ना
(e) x को 5 से गुणा करके परिणाम में 15 घटाना
(f) y को -5 से गुणा करके परिणाम को 18 में जोड़ना।
उत्तर
(a) 7m + 6
(b) 2a + 13
(c) -5x
(d) -5x + 10
(e) 5x – 15
(f) -5y + 18
प्रश्न 6.
(a) k और 4 का प्रयोग करके अलग-अलग व्यंजक बनाइए। प्रत्येक व्यंजक में दोनों एक-एक बार होने चाहिए।
(b) m, 5 और 7 का प्रयोग करके व्यंजक बनाइए। प्रत्येक व्यंजक में m अवश्य होना चाहिए। हर व्यंजक केवल दो अलग-अलग संख्या संक्रियाओं का प्रयोग करें।
उत्तर
(a) k + 9, k – 9, 𝑘9, 9k इत्यादि।
(b) 5m + 7, 5m – 7, 5𝑚7 इत्यादि।
Bihar Board Class 6 Maths बीजगणित Ex 12.4
प्रश्न 1.
निम्नलिखित प्रश्नों के उत्तर दीजिए :
(a) सुशीला की वर्तमान आयु वर्ष लीजिए।
(i) बताइए 5 वर्ष पूर्व उसकी आयु कितनी थी?
(ii) बताइए 4 वर्ष बाद वह कितने वर्ष की हो जाएगी?
(iii) सुशीला के दादाजी की आयु सुशीला के आय की 7 गुनी है। उसके दादाजी की आयु क्या है?
(iv) सुशीला की बड़ी बहन की आयु सुशीला की आयु के दुगने से 3 वर्ष कम है। उसके बड़ी बहन की आयु क्या है?
(b) एक आयताकार हॉल की लमबई उसकी चौड़ाई के दुगने से 5 मीटर अधिक है। यदि चौड़ाई b मीटर है, तो लम्बाई क्या है?
(c) एक आयताकार बॉक्स की ऊँचाई। सेमी है। इसकी लम्बाई, ऊँचाई की 3 गुनी है और चौड़ाई, लम्बाई से 7 सेमी है। बॉक्स की लम्बाई और चौड़ाई को ऊँचाई के पदों में व्यक्त कीजिए।
(d) एक बस x किमी प्रति घंटा की चाल से चल रही है। यह पटना से राजगीर की ओर जा रही है। बस 3 घंटे चलने के बाद भी राजगीर की दूरी 22 किमी बची रह जाती है। क्या आप x का प्रयोग करते हुए पटना से राजगीर की दूरी बताइए।
हल :
(a) (i) सुशीला की वर्तमान आयु = x वर्ष
5 वर्ष पूर्व सुशीला की आयु = (x – 5) वर्ष
(ii) 4 वर्ष पूर्व सुशीला की आयु = (x – 4) वर्ष
(iii) सुशीला के दादाजी की आयु = सुशीला की आयु का 7 गुनी = x × 7 = 7x वर्ष
(iv) सुशीला की बड़ी बहन की आयु = सुशीला की आयु की दोगुनी – 3
= x × 2 – 3
= 2x – 3
(b) यदि आयत की चौड़ाई = b मीटर
तब आयत की लम्बाई = चौड़ाई के दूगुन से 5 मीटर अधिक
= b × 2 + 5
= 2b + 5
(c) आयताकार बॉक्स की ऊँचाई = h
बॉक्स की लम्बाई = ऊँचाई की तिगुनी = h × 3 = 3h सेमी
बॉक्स की चौड़ाई = लम्बाई से 7 सेमी कम = 3h – 7 = 3h – 7 सेमी
(d) बस की चाल = x किमी प्रति घंटा
3 घंटे के बाद बस द्वारा तय की दूरी = 3 × x = 3x किमी
पटना से राजगीर की दूरी = 3x + 22
प्रश्न 2.
व्यंजकों के प्रयोग से बने निम्न कथनों को साधारण भाषा के कथनों में बदलिए-
(उदाहरणार्थ, हमारी कक्षा में x विद्यार्थी हैं और स्कूल में 15x विद्यार्थी हैं| साधारण भाषा में स्कूल में विद्यार्थियों की कुल संख्या हमारी कक्षा के विद्यार्थियों की 15 गुनी है।)
(a) राखी के पास x रुपये हैं। उसकी सहेली के पास 3x रुपये हैं|
(b) एक अभ्यास-पुस्तिका का मूल्य p रु. है। एक पुस्तक का मूल्य 4p रु. है।
(c) सुरेश के पास y बकरियाँ हैं। रमेश के पास 𝑦4 बकरियाँ हैं।
(d) मोहन की आयु r वर्ष है। उसके पिताजी की आयु 4r वर्ष है और उसकी माँ की आयु (4r – 5) वर्ष है।
उत्तर
(a) राखी की सहेली के पास राखी से तीन गुणा रुपये हैं।
(b) पुस्तक का मूल्य अभ्यास-पुस्तिका से चार गना है।
(c) रमेश की बकरियाँ सुरेश की बकरियों का चौथाई भाग है।
(d) मोहन के पिता की उम्र मोहन से चार गुना तथा उसकी माँ की उम्र पिता के उम्र से 5 वर्ष कम है।
प्रश्न 3.
(a) सपना की आयु x वर्ष दी हुई है। क्या आप अनुमान लगा सकते हैं कि (x + 5) और (x – 3) क्या दर्शाएगा?
(b) दिया हुआ है कि एक कक्षा के m विद्यार्थी टेलीविजन देखना पसंद करते हैं। 3m क्या दर्शाएगा? 𝑚2 क्या दर्शा सकता है?
हल :
(a) x + 5 का मतलब है सपना की आयु x वर्ष से 5 वर्ष अधिक है। (x – 3) का मतलब है सपना की आयु x वर्ष से 3 वर्ष अधिक है।
(b) 3m का मतलब है कक्षा के विद्यार्थी की 3 गुनी विद्यार्थी टीवी देखना पसंद करते हैं। 𝑚2 का मतलब है कक्षा के m विद्यार्थी का आधा विद्यार्थी टी वी देखना पसंद करते हैं।
Bihar Board Class 6 Maths बीजगणित Ex 12.5
प्रश्न 1.
निम्नलिखित में कौन सा कथन समीकरण चार संख्याओं के हैं? सकारण उत्तर दीजिए। समीकरणों में समबद्ध चर भी लिखिए।
(a) 15 = x + 18
(b) (k – 8) > 5
(c) 93 = 3
(d) 8 × 5 – 12 = 28
(e) 60 + 7 – 10 = 2x
(f) 2n + 3 = 13
(g) 7 = 11 × 5 – 12 × 4
(h) 3𝑝2 < 5 (i) z + 8 > 12
(j) 7 – x = 35
हल :
(a) 15 = x + 18 यह एक चर समीकरण है जिसका चर x है।
(b) (k – 8) > 5 यह एक चर समीक नहीं है क्योंकि चर के अनेक मान के लिए समीकरण को संतुष्ट करता है।
(c) 93 = 3 (नहीं, एक संख्यात्मक समीकरण है)
(d) 8 × 5 – 12 = 28 (नहीं, एक संख्यात्मक समीकरण है)
(e) 60 + 7 – 10 = 2x
यह एक चर समीकरण है क्योंकि यह देवल चर के एक मान के लिए समीकरण को संतुष्ट करता है : चर x है।
(f) 2n + 3 = 13 यह एक चर समीकरण है जिसका चर x है।
(g) 7 = 11 × 5 – 12 × 4 (एक संख्यात्मक समीकरण है। नहीं)
(h) 3𝑝2 <5 (नहीं, एक संख्यात्मक समीकरण नहीं है क्योंकि चर के अनेक मान के लिए समीकरण को संतुष्ट करता है।) (i) z + 8 > 12 (नहीं, क्योंकि यह समीकरण एक से अधिक मान के लिए संतुष्ट करता है।)
(j) 7 – x = 5 यह एक चर समीकरण है क्योंकि यह समीकरण चर के लिए केवल एक मान को संतुष्ट करता है।
प्रश्न 2.
सारणी के तीसरे स्तम्भ में प्रविष्टियों को पूर कीजिए :
हल :
प्रश्न 3.
प्रत्येक समीकरण के सम्मुख कोष्ठकों में दिए मानों में से समीकरण का हल चुनिएँ दर्शाइए कि अन्य मान समीकरण को संतुष्ट नहीं करते हैं।
(a) 4a = 24 (5, 6, 9, 10)
(b) (k – 8) > 5 (10, 11, 12, 13)
(c) 93 = 3 (12, 13, 14, 15)
(d) 8 × 5 – 12 = 28 (49, 48, 46, 44)
(e) 60 + 7 – 10 = 2x (14, 15, 16, 17)
(f) 2n + 3 = 13 (1, 2, -3, 4, 0)
हल :
(a) 4a = 24 (5, 6, 9, 10)
4a = 24
a = 6
अतः उत्तर a = 6
(b) (k – 8) > 5 (10, 11, 12, 13)
k = 23 – 11 = 12,
अतः उत्तर k = 12
(c) 93 = 3 (12, 13, 14, 15)
P = 8 + 7 = 15,
अत: उत्तर P = 15
(d) 8 × 5 – 12 = 28 (49, 48, 46, 44)
k = 7 × 7 = 49
अत: उत्तर k = 49
(e) 60 + 7 – 10 = 2x (14, 15, 16, 17)
m = 37 – 21 = 16
अत: उत्तर m = 16
(f) 2n + 3 = 13 (1, 2, -3, -4, 0)
n = 2 – 5 = -3
अतः उत्तर n = -3
प्रश्न 4.
(a) नीचे दी हुई सारणी को पूरा कीजिए और इस सारणी को देखकर, ही समीकरण x + 6 = 13 का हल ज्ञात कीजिए :
(b) नीचे दी हुई सारणी को पूरा कीजिए और इस सारणी को देखकर ही समीकरण y + 6 = 4 का हल ज्ञात कीजिए :
(c) नीचे दी हुई सारणी को पूरा कीजिए और इस सारणी को देखकर ही समीकरण 5t = 40 का हल ज्ञात कीजिए :
(d) सारणी को पूरा करते हुए 𝑧3 = 4 का हल ज्ञात कीजिए :
हल :
प्रश्न 5.
हल कीलिए:
(a) y + 6 = 18
(b) z – 7 = 20
(c) 7p = 140
(d) 𝑞5 = 7
(e) 𝑘8 = 12
(f) 9y = 81
(g) x – 3 = 0
(h) t + 50 = 75
हल :
(a) y – 6 = 18
y = 18 – 6 = 12
(b) z – 7 = 20
z = 20 + 7 = 27
(c) 7p = 140
p = 1407 = 20
(d) 𝑞5 = 7
q = 7 × 5 = 35
(e) 𝑘8 = 12
k = 12 × 8 = 96
(f) 9y = 81
y = 819 = 9
(g) x – 3 = 0
x = 0 + 3 = 3
(h) t + 50 = 75
t = 75 – 50 = 25
BSEB Textbook Solutions PDF for Class 6th
- BSEB Class 6 Textbook Solutions PDF: Download Bihar Board STD 6th Book Answers
- BSEB Class 6 Maths Textbook Solutions PDF: Download Bihar Board STD 6th Maths Book Answers
- BSEB Class 6 Maths Chapter 1 संख्याओं की समझ Textbook Solutions PDF: Download Bihar Board STD 6th Maths Chapter 1 संख्याओं की समझ Book Answers
- BSEB Class 6 Maths Chapter 2 पूर्ण संख्याएँ Textbook Solutions PDF: Download Bihar Board STD 6th Maths Chapter 2 पूर्ण संख्याएँ Book Answers
- BSEB Class 6 Maths Chapter 3 संख्याओं का खेल Textbook Solutions PDF: Download Bihar Board STD 6th Maths Chapter 3 संख्याओं का खेल Book Answers
- BSEB Class 6 Maths Chapter 4 पूर्णांक Textbook Solutions PDF: Download Bihar Board STD 6th Maths Chapter 4 पूर्णांक Book Answers
- BSEB Class 6 Maths Chapter 5 आधारभूत ज्यामितीय जानकारियाँ Textbook Solutions PDF: Download Bihar Board STD 6th Maths Chapter 5 आधारभूत ज्यामितीय जानकारियाँ Book Answers
- BSEB Class 6 Maths Chapter 6 सरल आकृतियों की समझ Textbook Solutions PDF: Download Bihar Board STD 6th Maths Chapter 6 सरल आकृतियों की समझ Book Answers
- BSEB Class 6 Maths Chapter 7 भिन्न Textbook Solutions PDF: Download Bihar Board STD 6th Maths Chapter 7 भिन्न Book Answers
- BSEB Class 6 Maths Chapter 8 दशमलव Textbook Solutions PDF: Download Bihar Board STD 6th Maths Chapter 8 दशमलव Book Answers
- BSEB Class 6 Maths Chapter 9 आँकड़ों का प्रयोग Textbook Solutions PDF: Download Bihar Board STD 6th Maths Chapter 9 आँकड़ों का प्रयोग Book Answers
- BSEB Class 6 Maths Chapter 10 अनुपात और समानुपात Textbook Solutions PDF: Download Bihar Board STD 6th Maths Chapter 10 अनुपात और समानुपात Book Answers
- BSEB Class 6 Maths Chapter 11 ऐकिक नियम Textbook Solutions PDF: Download Bihar Board STD 6th Maths Chapter 11 ऐकिक नियम Book Answers
- BSEB Class 6 Maths Chapter 12 बीजगणित Textbook Solutions PDF: Download Bihar Board STD 6th Maths Chapter 12 बीजगणित Book Answers
- BSEB Class 6 Maths Chapter 13 क्षेत्रमिति : परिमिति एवं क्षेत्रफल Textbook Solutions PDF: Download Bihar Board STD 6th Maths Chapter 13 क्षेत्रमिति : परिमिति एवं क्षेत्रफल Book Answers
- BSEB Class 6 Maths Chapter 14 सममिति Textbook Solutions PDF: Download Bihar Board STD 6th Maths Chapter 14 सममिति Book Answers
- BSEB Class 6 Maths Chapter 15 प्रायोगिक ज्यामिति Textbook Solutions PDF: Download Bihar Board STD 6th Maths Chapter 15 प्रायोगिक ज्यामिति Book Answers
0 Comments:
Post a Comment