# HSSlive: Plus One & Plus Two Notes & Solutions for Kerala State Board

## AP Board Class 10 Maths Chapter 3 Polynomials Ex 3.3 Textbook Solutions PDF: Download Andhra Pradesh Board STD 10th Maths Chapter 3 Polynomials Ex 3.3 Book Answers AP Board Class 10 Maths Chapter 3 Polynomials Ex 3.3 Textbook Solutions PDF: Download Andhra Pradesh Board STD 10th Maths Chapter 3 Polynomials Ex 3.3 Book Answers

## Andhra Pradesh State Board Class 10th Maths Chapter 3 Polynomials Ex 3.3 Books Solutions

 Board AP Board Materials Textbook Solutions/Guide Format DOC/PDF Class 10th Subject Maths Chapters Maths Chapter 3 Polynomials Ex 3.3 Provider Hsslive

2. Click on the Andhra Pradesh Board Class 10th Maths Chapter 3 Polynomials Ex 3.3 Answers.
3. Look for your Andhra Pradesh Board STD 10th Maths Chapter 3 Polynomials Ex 3.3 Textbooks PDF.

## AP Board Class 10th Maths Chapter 3 Polynomials Ex 3.3 Textbooks Solutions with Answer PDF Download

Find below the list of all AP Board Class 10th Maths Chapter 3 Polynomials Ex 3.3 Textbook Solutions for PDF’s for you to download and prepare for the upcoming exams:

### 10th Class Maths 3rd Lesson Polynomials Ex 3.3 Textbook Questions and Answers

Question 1.
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
i) x2 – 2x – 8
ii) 4s2 – 4s + 1
iii) 6x2 – 3 – 7x
iv) 4u2 + 8u
v) t2 – 15
vi) 3x2 – x – 4
i) Given polynomial is x2 – 2x – 8
We have x2 – 2x – 8 = x2 – 4x + 2x – 8
= x(x – 4) + 2(x – 4)
= (x – 4) (x + 2)
So, the value of x2 – 2x – 8 is zero
when x – 4 = 0 or x + 2 = 0 i.e.,
when x = 4 or x = -2
So, the zeroes of x2 – 2x – 8 are 4 and -2.
Sum of the zeroes = 4 – 2 = 2 Coefficient of ,x -(-2)
= – Coefficient of 𝑥 Coefficient of 𝑥2 = −(−2)1 = 2
And product of the zeroes = 4 × (-2) = -8
= Constant term Coefficient of 𝑥2 = −81 = -8

ii) Given polynomial is 4s2 – 4s + 1
We have, 4s2 – 4s + 1
= 4s2 – 2s – 2s + 1
= 2s (2s – 1) – 1(2s – 1)
= (2s – 1) (2s – 1)
= (2s – 1)2
So, the value of 4s2 – 4s + 1 is zero
when 2s-1 = 0 or s = 12
∴ Zeroes of the polynomial are 12 and 12
∴ Sum of the zeroes = 12 + 12 = 1.
= – Coefficient of 𝑠 Coefficient of 𝑠2 = –−44 = 1
And product of the zeroes = (12)×(12) = 14
= Constant term Coefficient of 𝑥2 = 14

iii) Given polynomial is 6x2 – 3 – 7x
We have, 6x2 – 3 – 7x = 6x2 – 7x – 3
= 6x2 – 9x + 2x – 3
= 3x(2x – 3) + 1(2x – 3)
= (2x – 3) (3x + 1)
The value of 6x2 – 3 – 7x is zero, when the value of (3x +1) (2x – 3) is 0
i.e., when 3x + 1 = 0 and 2x – 3 = 0
3x = -1 and 2x = 3
x = −13 and x = 32
∴ The zeroes of 6x2 – 3 – 7x = −13 and 32
∴ Sum of the zeroes = 13 + 32 = 76.
= – Coefficient of 𝑥 Coefficient of 𝑥2 = −(−7)6 = 76
And product of the zeroes = (−13)×(32) = −12
= Constant term Coefficient of 𝑥2 = −36 = −12

iv) Given polynomial is 4u2 + 8u
We have, 4u2 + 8u = 4u (u + 2)
The value of 4u2 + 8u is 0,
when the value of 4u(u + 2) = 0, i.e.,
when u = 0 or u + 2 = 0, i.e.,
when u = 0 (or) u = – 2
∴ The zeroes of 4u2 + 8u are 0 and – 2.
Therefore, sum of the zeroes = 0 + (-2) = -2
= – Coefficient of 𝑢 Coefficient of 𝑢2 = −84 = -2
And product of the zeroes 0 . (-2) = 0
= Constant term Coefficient of 𝑢2 = 04 = 0

v) Given polynomial is t2 – 15.
We have, t2 – 15 = (t – √15 ) (t + √l5)
The value of t2 – 15 is 0,
when the value of (t – √15 ) (t + √l5) = 0, i.e.,
when t – √15 = 0 or t + √15 = 0, i.e.,
when t = √15 (or) t = -√15
∴ The zeroes of t2 – 15 are √15 and -√15.
Therefore, sum of the zeroes = √15 + (-√15) = 0
= – Coefficient of 𝑡 Coefficient of 𝑡2 = –01 = 0
And product of the zeroes √15 × (-√15) = -15
= Constant term Coefficient of 𝑡2 = −151 = -15

vi) Given polynomial is 3x2 – x – 4
we have, 3x2 – x – 4 = 3x2 + 3x – 4x – 4
= 3x(x + 1) – 4(x + 1)
= (x + 1) (3x – 4)
The value of 3x2 – x – 4 is 0 when the value of (x + 1) (3x – 4) is 0.
i.e., when x + 1 = 0 or 3x – 4 = 0
i.e., when x = -1 or x = 43
∴ The zeroes of 3x2 – x – 4 are -1 and 43
Therefore, sum of the zeroes = -1 + 43 = −3+43 = 13
= – Coefficient of 𝑥 Coefficient of 𝑥2 = −(−1)3 = 13
And product of the zeroes -1 × 43 = −43
= Constant term Coefficient of 𝑥2 = −43

Question 2.
Find the quadratic polynomial in each case, with the given numbers as the sum and product of its zeroes respectively.
i) 14, -1
ii) √2, 13
iii) 0, √5
iv) 1, 1
v) –14, 14
vi) 4, 1
Let the polynomial be ax2 + bx + c
and its zeroes be α and β.
i) Here, α + β = 14 and αβ = -1
Thus, the polynomial formed = x2 – (sum of the zeroes)x + product of the zeroes
= x2 – (14)x – 1
= x2 – 𝑥4 – 1
The other polynomials are (x2 – 𝑥4 – 1)
then the polynomial is 4x2 – x – 4.

ii) Here, α + β = √2 and αβ = 13
Thus, the polynomial formed = x2 – (sum of the zeroes)x + product of the zeroes
= x2 – (√2)x + 13
= x2 – √2x + 13
The other polynomials are (x2 – √2x + 13)
then the polynomial is 3x2 – 3√2x + 1.

iii) Here, α + β = 0 and αβ = √5
Thus, the polynomial formed = x2 – (sum of the zeroes)x + product of the zeroes
= x2 – (0)x + √5
= x2 + √5

iv) Let the polynomial be ax2 + bx + c and its zeroes be α and β.
Then α + β = 1 = −(−1)1 = −𝑏𝑎 and
αβ = 1 = latex]\frac{1}{1}[/latex] = 𝑐𝑎
If a = 4, then b = 1 and c = 1
∴ One quadratic polynomial which satisfies the given conditions is 4x2 + x + 1.

v) Let the polynomial be ax2 + bx + c and its zeroes be α and β.
Then α + β = −14 = −𝑏𝑎 and
αβ = 14 = 𝑐𝑎
If a = 4, then b = 1 and c = 1
∴ One quadratic polynomial which satisfies the given conditions is 4x2 + x + 1.

vi) Let the polynomial be ax2 + bx + c and its zeroes be α and β.
Then α + β = 4 = −(−4)1 = −𝑏𝑎 and
αβ = 1 = 11 = 𝑐𝑎
If a = 1, then b = -4 and c = 1
∴ One quadratic polynomial which satisfies the given conditions is x2 – 4x + 1.

Question 3.
Find the quadratic polynomial, for the zeroes α, β given in each case.
i) 2, -1
ii) √3, -√3
iii) 14, -1
iv) 12, 32
i) Let the polynomial be ax2 + bx + c, a ≠ 0 and its zeroes be α and β.
Here α = 2 and β = – 1
Sum of the zeroes = α + β = 2 + (-l) = 1
Product of the zeroes = αβ = 2 × (-1) = -2
Therefore the quadratic polynomial ax2 + bx + c is x2 – (α + β)x + αβ = [x2 – x – 2]
the quadratic polynomial will be x2 – x – 2.

ii) Let the zeroes be α = √3 and β = -√3
Sum of the zeroes = α + β
= √3 + (-√3) = 0
Product of the zeroes = αβ
= √3 × (-√3) = -3
ax2 + bx + c is [x2 – (α + β)x + αβ]
= [x2 – 0.x + (-3)] = [x2 – 3]
the quadratic polynomial will be x2 – 3.

iii) Let the zeroes be α = 14 and β = -1
Sum of the zeroes = α + β
= 14 + (-1) = 1+(−4)4 = −34
Product of the zeroes = αβ
= 14 × (-1) = −14
ax2 + bx + c is [x2 – (α + β)x + αβ]
= [x2 – (−34).x + (−14)]
the quadratic polynomial will be 4x2 + 3x – 1.

iv) Let the zeroes be α = 12 and β = 32
Sum of the zeroes = α + β
= 12 + 32 = 1+32 = 42 = 2
Product of the zeroes = αβ
= 12 × 32 = 34
ax2 + bx + c is [x2 – (α + β)x + αβ]
= [x2 – 2x + (34)]
the quadratic polynomial will be 4x2 – 8x + 3.

Question 4.
Verify that 1, -1 and -3 are the zeroes of the cubic polynomial x3 + 3x2 – x – 3 and check the relationship between zeroes and the coefficients.
Given cubic polynomial
p(x) = x3 + 3x2 – x – 3
Comparing the given polynomial with ax3 + bx2 + cx + d, we get a = 1, b = 3, c = -1, d = -3
Futher given zeroes are 1,-1 and – 3
p(1) = (1)3 + 3(1)2 – 1 – 3
= 1 + 3 – 1 – 3 = 0
p(-1) = (-1)3 + 3(-1)2 – 1 – 3
= -1 + 3 + 1 – 3 = 0
p(-3) = (-3)3 + 3(-3)2 – (-3) – 3
= -27 + 27 + 3 – 3 = 0
Therefore, 1, -1 and -3 are the zeroes of x3 + 3x2 – x – 3.
So, we take α = 1, β = -1 and γ = -3 Now,
α + β + γ = 1 + (-1) + (-3) = -3
αβ + βγ + γα = 1(-l) + (-1) (-3) + (-3)1
= -1 + 3 – 3 = -1
= 𝑐𝑎 = −11 = -1
αβγ = 1 (-1) (-3) = 3 = −𝑑𝑎 = −(−3)1 = 3

## Andhra Pradesh Board Class 10th Maths Chapter 3 Polynomials Ex 3.3 Textbooks for Exam Preparations

Andhra Pradesh Board Class 10th Maths Chapter 3 Polynomials Ex 3.3 Textbook Solutions can be of great help in your Andhra Pradesh Board Class 10th Maths Chapter 3 Polynomials Ex 3.3 exam preparation. The AP Board STD 10th Maths Chapter 3 Polynomials Ex 3.3 Textbooks study material, used with the English medium textbooks, can help you complete the entire Class 10th Maths Chapter 3 Polynomials Ex 3.3 Books State Board syllabus with maximum efficiency.

## FAQs Regarding Andhra Pradesh Board Class 10th Maths Chapter 3 Polynomials Ex 3.3 Textbook Solutions

#### Can we get a Andhra Pradesh State Board Book PDF for all Classes?

Yes you can get Andhra Pradesh Board Text Book PDF for all classes using the links provided in the above article.

## Important Terms

Andhra Pradesh Board Class 10th Maths Chapter 3 Polynomials Ex 3.3, AP Board Class 10th Maths Chapter 3 Polynomials Ex 3.3 Textbooks, Andhra Pradesh State Board Class 10th Maths Chapter 3 Polynomials Ex 3.3, Andhra Pradesh State Board Class 10th Maths Chapter 3 Polynomials Ex 3.3 Textbook solutions, AP Board Class 10th Maths Chapter 3 Polynomials Ex 3.3 Textbooks Solutions, Andhra Pradesh Board STD 10th Maths Chapter 3 Polynomials Ex 3.3, AP Board STD 10th Maths Chapter 3 Polynomials Ex 3.3 Textbooks, Andhra Pradesh State Board STD 10th Maths Chapter 3 Polynomials Ex 3.3, Andhra Pradesh State Board STD 10th Maths Chapter 3 Polynomials Ex 3.3 Textbook solutions, AP Board STD 10th Maths Chapter 3 Polynomials Ex 3.3 Textbooks Solutions,
Share: