# HSSlive: Plus One & Plus Two Notes & Solutions for Kerala State Board

## AP Board Class 10 Maths Chapter 8 Similar Triangles Ex 8.4 Textbook Solutions PDF: Download Andhra Pradesh Board STD 10th Maths Chapter 8 Similar Triangles Ex 8.4 Book Answers AP Board Class 10 Maths Chapter 8 Similar Triangles Ex 8.4 Textbook Solutions PDF: Download Andhra Pradesh Board STD 10th Maths Chapter 8 Similar Triangles Ex 8.4 Book Answers

## Andhra Pradesh State Board Class 10th Maths Chapter 8 Similar Triangles Ex 8.4 Books Solutions

 Board AP Board Materials Textbook Solutions/Guide Format DOC/PDF Class 10th Subject Maths Chapters Maths Chapter 8 Similar Triangles Ex 8.4 Provider Hsslive

2. Click on the Andhra Pradesh Board Class 10th Maths Chapter 8 Similar Triangles Ex 8.4 Answers.
3. Look for your Andhra Pradesh Board STD 10th Maths Chapter 8 Similar Triangles Ex 8.4 Textbooks PDF.
4. Now download or read the Andhra Pradesh Board Class 10th Maths Chapter 8 Similar Triangles Ex 8.4 Textbook Solutions for PDF Free.

## AP Board Class 10th Maths Chapter 8 Similar Triangles Ex 8.4 Textbooks Solutions with Answer PDF Download

Find below the list of all AP Board Class 10th Maths Chapter 8 Similar Triangles Ex 8.4 Textbook Solutions for PDF’s for you to download and prepare for the upcoming exams:

### 10th Class Maths 8th Lesson Similar Triangles Ex 8.4 Textbook Questions and Answers

Question 1.
Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals. Given : □ ABCD is a rhombus.
Let its diagonals AC and BD bisect each other at ‘O’.
We know that “the diagonals in a rhombus are perpendicular to each other”.
In △AOD; AD2 = OA2 + OD2 ………. (1)
[Pythagoras theorem]
In △COD; CD2 = OC2 + OD2 ………. (2)
[Pythagoras theorem]
In △AOB; AB2 = OA2 + OB2 ………. (3)
[Pythagoras theorem]
In △BOC; BC2 = OB2 + OC2 ………. (4)
[Pythagoras theorem]
Adding the above equations we get AD2 + CD2 + AB2 + BC2 = 2 (OA2 + OB2 + OC2 + OD2) Question 2.
ABC is a right triangle right angled at B. Let D and E be any points on AB and BC respectively. Prove that AE2 + CD2 = AC2 + DE2. Given: In △ABC; ∠B = 90°
D and E are points on AB and BC.
R.T.P.: AE2 + CD2 = AC2 + DE2
Proof: In △BCD, △BCD is a right triangle right angled at B.
∴ BD2 + BC2 = CD2 ……… (1)
[∵ Pythagoras theorem states that hypotenuse2 = side2 + side2]
In △ABE; ∠B = 90°
Adding (1) and (2), we get
BD2 + BC2 + AB2 + BE2 – CD2 + AE2
(BD2 + BE2) + (AB2 + BC2) = CD2 + AE2
DE2 + AC2 – CD2 + AE2 [Q.E.D.]
[∵ (i) In △DBE, ∠B = 90° and DE2 = BD2 + BE2
(ii) In △ABC, ∠B = 90° and AB2 + BC2]

Question 3.
Prove that three times the square of any side of an equilateral triangle is equal to four times the square of the altitude.
Given: △ABC, an equilateral triangle;
AD – altitude and the side is a units, altitude h units.
R.T.P: 3a2 = 4h2 Proof: In △ABD, △ACD
∠B = ∠C [∵ 60°]
∴ ∠BAD = ∠DAC [∵ Angle sum property]
Also, BA = CA
∴ △ABD s △ACD (by SAS congruence condition)
Hence, BD = CD = 12BC = 𝑎2 [∵ c.p.c.t]
Now in △ABD, AB2 = AD2 + BD2
[∵ Pythagoras theorem]
a2 = h2 + (𝑎2)2
a2 = h2 + 𝑎24
h2 = 4𝑎2−𝑎24
∴ h2 = 3𝑎24
⇒ 4h2 = 3a2 (Q.E.D)

Question 4.
PQR is a triangle right angled at P and M is a point on QR such that PM ⊥ QR. Show that PM2 = QM . MR. Given: In △PQR, ∠P = 90° and PM ⊥ QR.
R.T.P : PM2 = QM . MR
Proof: In △PQR; △MPR
∠P = ∠M [each 90°]
∠R = ∠R [common]
∴ △PQR ~ △MPR ……… (1)
[A.A. similarity]
In △PQR and △MQP,
∠P = ∠M (each 90°)
∠Q = ∠Q (common)
∴ △PQR ~ △MQP ……… (2)
[A.A. similarity]
From (1) and (2),
△PQR ~ △MPR ~ △MQP [transitive property]
∴ △MPR ~ △MQP
𝑀𝑃𝑀𝑄 = 𝑃𝑅𝑄𝑃 = 𝑀𝑅𝑀𝑃
[Ratio of corresponding sides of similar triangles are equal]
𝑃𝑀𝑄𝑀 = 𝑀𝑅𝑃𝑀
PM . PM = MR . QM
PM2 = QM . MR [Q.E.D]

Question 5.
ABD is a triangle right angled at A and AC ⊥ BD.
Show that (i) AB2 = BC BD
(iii) AC2 = BC DC. Given: In △ABD; ∠A = 90° AC ⊥ BD
R.T.P.:
i) AB2 = BC . BD
Proof: In △ABD and △CAB,
∠B = ∠B [common]
∴ △ABD ~ △CBA
[by A.A. similarity condition]
Hence, 𝐴𝐵𝐵𝐶 = 𝐵𝐷𝐴𝐵 = 𝐴𝐷𝐴𝐶
[∵ Ratios of corresponding sides of similar triangles are equal]
𝐴𝐵𝐵𝐷 = 𝐵𝐶𝐴𝐵
⇒ AB . AB = BC . BD
∴ AB2 = BC . BD

ii) AD2 = BD . CD
∠D = ∠D (common)
∴ △ABD ~ △CAD [A.A similarity]
Hence, 𝐴𝐵𝐴𝐶 = 𝐵𝐷𝐴𝐷 = 𝐴𝐷𝐶𝐷
⇒ 𝐵𝐷𝐴𝐷 = 𝐴𝐷𝐶𝐷
AD2 = BD . CD [Q.E.D]

iii) AC2 = BC . DC
Proof: From (i) and (ii)
△ACB ~ △DCA
[∵ △BAD ~ △BCA ~ △ACD
Hence, 𝐴𝐶𝐷𝐶 = 𝐵𝐶𝐴𝐶 = 𝐴𝐵𝐴𝐷
𝐴𝐶𝐷𝐶 = 𝐵𝐶𝐴𝐶
AC . AC = BC . DC
AC2 = BC . DC [Q.E.D]

Question 6.
ABC is an isosceles triangle right angled at C. Prove that AB2 = 2AC2. Given: In △ABC; ∠C = 90°; AC = BC.
R.T.P.: AB2 = 2AC2
Proof: In △ACB; ∠C = 90°
Hence, AC2 + BC2 = AB2
[Square of the hypotenuse is equal to sum of the squares of the other two sides – Pythagoras theorem]
⇒ AC2 + AC2 = AB2 [∵ AC = BC given]
⇒ AB2 = 2AC2 [Q.E.D.]

Question 7.
‘O’ is any point in the interior of a triangle ABC.
OD ⊥ BC, OE ⊥ AC and OF ⊥ AB, show that
i) OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2
ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2. Given: △ABC; O’ is an interior point of △ABC.
OD ⊥ BC, OE ⊥ AC, OF ⊥ AB.
R.T.P.:
i) OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2
Proof: In OAF, OA2 = AF2 + OF2 [Pythagoras theorem]
⇒ OA2 – OF2 = AF2 …….. (1)
In △OBD,
OB2 = BD2 + OD2
⇒ OB2 – OD2 = BD2 …….. (2)
In △OCE, OC2 = CE2 + OE2
OC2 – OE2 = CE2 ……… (3)
Adding (1), (2) and (3) we get,
OA2 – OF2 + OB2 – OD2 + OC2 – OE2 = AF2 + BD2 + CE2
OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AF2 + BD2 + CE2 ……… (4)

ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2
In △OAE,
OA2 = AE2 + OF2 ……… (1)
⇒ OA2 – OE2 = AE2
In △OBF, OB2 = BF2 + OF2
OB2 – OF2 = BF2 ……… (2)
In △OCD, OC2 = OD2 + CD2
OC2 – OD2 = CD2 ……… (3)
Adding (1), (2) and (3) we get
OA2 – OE2 + OB2 – OF2 + OC2 – OD2 = AE2 + BF2 + CD2
⇒ OA2 + OB2 + OC2 – OD2 – OE2 – OF2 = AE2 + CD2 + BF2
⇒ AF2 + BD2 + CE2 = AE2 + CD2 + BF2 [From problem (i)]

Question 8.
A wire attached to vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut? Height of the pole AB = 18 m.
Length of the wire AC = 24 m.
Distance beween the pole and the stake be ‘d’ meters.
By Pythagoras theorem,
Hypotenuse2 = side2 + side2
242 = 182 + d2
d2 = 242 – 182 = 576 – 324 = 252
= 36×7‾‾‾‾‾‾√
∴ d = 6√7 m.

Question 9.
Two poles of heights 6 m and 11m stand on a plane ground. If the distance between the feet of the poles is 12 m, find the distance between their tops. Let the height of the first pole AB = 6 m.
Let the height of the second pole CD = 11 m.
Distance between the poles AC = 12 m.
From the figure □ ACEB is a rectangle.
∴ AB = CE = 6 m
ED = CD – CE = 11 – 6 = 5 m
Now in △BED; ∠E = 90°; DE = 5 m; BE = 12 m
BD2 = BE2 + DE2
[hypotenuse2 = side2 + side2 – Pythagoras theorem]
= 122 + 52
= 144 + 25
BD2 = 169
BD = √l69 = 13m
∴ Distance between the tops of the poles = 13 m.

Question 10.
In an equilateral triangle ABC, D is a point on side BC such that BD = 13 BC. Prove that 9AD2 = 7AB2. In △ABE, ∠E = 90°
⇒ AB⎯⎯⎯⎯⎯⎯⎯⎯ is hypotenuse.
∴ AB2 = AE2 + BE2
AE2 = AB2 – BE2
⇒ AE2 = AB2 – (𝐵𝐶2)2
= AE2 = AB2 – (𝐴𝐵2)2 (∵ AB = BC)
⇒ AE2 = 34AB2 ……… (1)
⇒ AD2 = AE2 + DE2
⇒ AE2 = AD2 + DE2 ⇒ 28 AB2 = 36 AD2
⇒ 7 AB2 = 9 AD2
Hence proved.

Question 11.
In the given figure, ABC is a triangle right angled at B. D and E are points on BC trisect it. Prove that 8 AE2 = 3 AC2 + 5 AD2. In △ABC, ∠B=90°
AC2 = AB2 + BC2
3AC2 = 3AB2 + 3BC2 …….. (1)
In △ABD, ∠B = 90°
∴ AD2 = AB2 + BD2 = AB2 + (𝐵𝐶3)2
⇒ AD2 = AB2 + BC29
⇒ 5 AD2 = 5 AB2 + 5BC29 …….. (2)
(1) + (2)
3 AC2 + 5 AD2 = 3 AB2 + 3 BC2 + 5 AB2 + 59BC2
= 8AB2 + 329BC2 ……… (3)
Now in △ABE, ∠B = 90°
⇒ AE⎯⎯⎯⎯⎯⎯⎯⎯ is hypotenuse.
⇒ AE2 = AB2 + BE2 = AB2 + (23𝐵𝐶)2
= AB2 + 49BC2
⇒ AE2 = 8AB2 + 329BC2 ……… (4)
∴ RHS of (3) and (4) are equal.
∴ LHS of (3) and (4) are equal.
∴ 8 AE2 = 3 AC2 + 5 AD2.
Hence proved.

Question 12.
ABC is an isosceles triangle right angled at B. Equilateral triangles ACD and ABE are constructed on sides AC and AB. Find the ratio between the areas of △ABE and △ACD. Given: △ABC, AB = BC and ∠B = 90°
△ABE on AB; △ACD on AC are equiangular triangles.
Let equal sides of the isosceles right triangle, AB = BC = a (say)
Then, in △ABC, ∠B = 90°
AC2 – AB2 + BC2
[hypotenuse2 = side2 + side2 – Pythagoras theorem] = a2 + a2 = 2a2
Since, △ABE ~ △ACD
ΔABEΔACD = AB2AC2
[∵ Ratio of areas of two similar tri-angles is equal to the ratio of squares of their corresponding sides]
= 𝑎22𝑎2 = 12
△ABE : △ACD = 1 : 2.

## Andhra Pradesh Board Class 10th Maths Chapter 8 Similar Triangles Ex 8.4 Textbooks for Exam Preparations

Andhra Pradesh Board Class 10th Maths Chapter 8 Similar Triangles Ex 8.4 Textbook Solutions can be of great help in your Andhra Pradesh Board Class 10th Maths Chapter 8 Similar Triangles Ex 8.4 exam preparation. The AP Board STD 10th Maths Chapter 8 Similar Triangles Ex 8.4 Textbooks study material, used with the English medium textbooks, can help you complete the entire Class 10th Maths Chapter 8 Similar Triangles Ex 8.4 Books State Board syllabus with maximum efficiency.

## FAQs Regarding Andhra Pradesh Board Class 10th Maths Chapter 8 Similar Triangles Ex 8.4 Textbook Solutions

#### Can we get a Andhra Pradesh State Board Book PDF for all Classes?

Yes you can get Andhra Pradesh Board Text Book PDF for all classes using the links provided in the above article.

## Important Terms

Andhra Pradesh Board Class 10th Maths Chapter 8 Similar Triangles Ex 8.4, AP Board Class 10th Maths Chapter 8 Similar Triangles Ex 8.4 Textbooks, Andhra Pradesh State Board Class 10th Maths Chapter 8 Similar Triangles Ex 8.4, Andhra Pradesh State Board Class 10th Maths Chapter 8 Similar Triangles Ex 8.4 Textbook solutions, AP Board Class 10th Maths Chapter 8 Similar Triangles Ex 8.4 Textbooks Solutions, Andhra Pradesh Board STD 10th Maths Chapter 8 Similar Triangles Ex 8.4, AP Board STD 10th Maths Chapter 8 Similar Triangles Ex 8.4 Textbooks, Andhra Pradesh State Board STD 10th Maths Chapter 8 Similar Triangles Ex 8.4, Andhra Pradesh State Board STD 10th Maths Chapter 8 Similar Triangles Ex 8.4 Textbook solutions, AP Board STD 10th Maths Chapter 8 Similar Triangles Ex 8.4 Textbooks Solutions,
Share: